Characterization of the biosynthetic gene cluster for cryptic phthoxazolin A in Streptomyces avermitilis

نویسندگان

  • Dian Anggraini Suroto
  • Shigeru Kitani
  • Masayoshi Arai
  • Haruo Ikeda
  • Takuya Nihira
چکیده

Phthoxazolin A, an oxazole-containing polyketide, has a broad spectrum of anti-oomycete activity and herbicidal activity. We recently identified phthoxazolin A as a cryptic metabolite of Streptomyces avermitilis that produces the important anthelmintic agent avermectin. Even though genome data of S. avermitilis is publicly available, no plausible biosynthetic gene cluster for phthoxazolin A is apparent in the sequence data. Here, we identified and characterized the phthoxazolin A (ptx) biosynthetic gene cluster through genome sequencing, comparative genomic analysis, and gene disruption. Sequence analysis uncovered that the putative ptx biosynthetic genes are laid on an extra genomic region that is not found in the public database, and 8 open reading frames in the extra genomic region could be assigned roles in the biosynthesis of the oxazole ring, triene polyketide and carbamoyl moieties. Disruption of the ptxA gene encoding a discrete acyltransferase resulted in a complete loss of phthoxazolin A production, confirming that the trans-AT type I PKS system is responsible for the phthoxazolin A biosynthesis. Based on the predicted functional domains in the ptx assembly line, we propose the biosynthetic pathway of phthoxazolin A.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of novel mureidomycin analogues via rational activation of a cryptic gene cluster in Streptomyces roseosporus NRRL 15998

Antimicrobial agents are urgently needed to tackle the growing threat of antibiotic-resistant pathogens. An important source of new antimicrobials is the large repertoire of cryptic gene clusters embedded in microbial genomes. Genome mining revealed a napsamycin/mureidomycin biosynthetic gene cluster in the chromosome of Streptomyces roseosporus NRRL 15998. The cryptic gene cluster was activate...

متن کامل

Characterization of a silent sesquiterpenoid biosynthetic pathway in Streptomyces avermitilis controlling epi‐isozizaene albaflavenone biosynthesis and isolation of a new oxidized epi‐isozizaene metabolite

The genome-sequenced, Gram-positive bacterium Streptomyces avermitilis harbours an orthologue (SAV_3032) of the previously identified epi-isozizaene synthase (SCO5222) in Streptomyces coelicolor A3(2). The sav3032 is translationally coupled with the downstream sav3031 gene encoding the cytochrome P450 CYP170A2 analogous to SCO5223 (CYP170A1) of S. coelicolor A3(2), which exhibits a similar tran...

متن کامل

The autoregulator receptor homologue AvaR3 plays a regulatory role in antibiotic production, mycelial aggregation and colony development of Streptomyces avermitilis.

The γ-butyrolactone autoregulator receptor has been shown to control secondary metabolism and/or morphological differentiation across many Streptomyces species. Streptomyces avermitilis produces an important anthelmintic agent (avermectin) and two further polyketide antibiotics, filipin and oligomycin. Genomic analysis of S. avermitilis revealed that this micro-organism has the clustered putati...

متن کامل

Activation and Characterization of a Cryptic Polycyclic Tetramate Macrolactam Biosynthetic Gene Cluster

Polycyclic tetramate macrolactams (PTMs) are a widely distributed class of natural products with important biological activities. However, many of these PTMs have not been characterized. Here we apply a plug-and-play synthetic biology strategy to activate a cryptic PTM biosynthetic gene cluster SGR810-815 from Streptomyces griseus and discover three new PTMs. This gene cluster is highly conserv...

متن کامل

Characterization of the ‘pristinamycin supercluster’ of Streptomyces pristinaespiralis

Pristinamycin, produced by Streptomyces pristinaespiralis Pr11, is a streptogramin antibiotic consisting of two chemically unrelated compounds, pristinamycin I and pristinamycin II. The semi-synthetic derivatives of these compounds are used in human medicine as therapeutic agents against methicillin-resistant Staphylococcus aureus strains. Only the partial sequence of the pristinamycin biosynth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018